Reprinted from JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Vol. 107, No. 1, April 1985
All Rights Reserved by Academic Press, New York and London Printed in Belgium

More on the Umbral Calculus, with Emphasis
on the g-Umbral Calculus

STEVEN RoMAN

Department of Mathematics, California State University, Fullerton, California 92634

Submitted by G.-C. Rota

The interrelationship between distinct umbral calculi is studied. These ideas are
applied in particular to g-umbral calculus, which shows how Andrews’ g-theory
relates to the g-theory discussed in the previous paper by the author. The g-Hermite
polynomials and basic hypergeometric series are briefly discussed.  © 1985 Academic

Press, Inc.

1. INTRODUCTION

In this paper we continue the study of the umbral calculus begun in [8]
(see also [9, 10]). Some knowledge of Sections 1-5 and 11 of [8] would be
helpful here.

Recall that for each sequence ¢, of non-zero constants we defined a dis-
tinct umbral calculus, used in the study of polynomial sequences s,(x)
whose generating function has the form

& selx) 4, 1
*= (f
e o

where g(t)=go+ g1+ - (g,720), A =f1t+ 1,2+ (/L #0) and
['s} k
et)=Y k.

k=0 Ck

We called these sequences s,(x) Sheffer sequences. In Section 11 of [8] we
touched briefly on the g-umbral calculus, defined by

c _(—q)l—g*)-(1—g")

i (1—g)"
Our objective in this paper is to begin studying the relationship between
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distinct umbral calculi whose defining sequences ¢, are related. We have
restricted attention to the case f(¢)=1.

The first step, in Section 2, is to extend slightly the notion of Sheffer
sequence (for f(¢)=1) to include sesquences r,(x) for which

o0

ri(x) 1
Eo 7 tk—msx(t) (1.1)

where g(¢) and ¢,(t) are as above. Notice that the sequence d, on the left
may be different from the sequence ¢, used in defining ¢.(z). While this
extension is modest from one point of view, namely that (d,/c,) r,(x) is
Sheffer in the ¢,-umbral calculus, it does serve a useful purpose. For exam-
ple, the g-umbral calculus in [8] employs the identity

n

015,0= 3 () sx)5, )

k=0

whereas Andrews’ g-theory [3] employs the identity

)= 3 (1) sin) s, )

k=0

Clarification of the roles of these identities is made possible by the afore-
mentioned extension (see Theorem 2.5). We call sequences r,(x) satisfying
(1.1) basic sequences, although this term is a bit overused.

In Section 3 we consider a class of operators whose importance in the
umbral calculus was recognized by Andrews. In Section 4 we study the
relationship between the exponential-type series ¢.(¢) for different umbral
calculi. It is this series which lies at the heart of the theory.

Sections 5-7 are devoted to the g-umbral calculus and related umbral
calculi. The g-Hermite polynomials, among others, are placed in the con-
text of the umbral calculus. Infinite products are discussed briefly. Heine’s
theorem [11, p. 92] is shown to be nothing but a generating function and
the basic analog of Gauss’ theorem [11, p. 97] is shown to be but a special
case of a result from Section 4. Space limitations force us to postpone to a
sequel a more detailed discussion of these umbral calculi or of others.

In Section 8 we discuss very briefly some additional expansion formulas,
including Carlitz’s g-analog of a special case of the Lagrange inversion for-
mula.

We wish to express our indebtedness to Andrews’ work [3]. The
influence of his ideas is clearly visible in this paper.
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2. Basic RESULTS

A sequence ¢, of constants is admissible if c,#0 for all n>0. We shall
use boldface type to denote admissible sequences—<¢ for ¢,, d for d,, etc.

For each admissible sequence ¢ we define linear functionals and
operators, as in [8], by

<tlc( l xn> = cnén,k’

c

n n n—k

Cn—k

=0, n<k.

The subscript ¢ is needed since we shall be dealing with more than one
admissible sequence at a time.

We recall from [8] that the sequence s,(x) is Sheffer for (g(z.), t.),
where g(¢) is invertible, if and only if any one of the following equivalent
conditions holds:

(]) <g(tc) tlc( I Sn(x)>=cn5n,ka

(2) <g(tc) l sn(x)> = c()én,O.’ tcsn(x) = (Cn/cn— 1 ) S,,7 l(x)’

() oo (slx)er) t* =¢, (1)/g(r), where &, (1) =X (x¥/c,) .
Notice that (3) is a formal equation in the formal variables x and ¢ and so
there is no need for a subscript on 7. We say that s,(x) is Sheffer for 1. if it
is Sheffer for (g(z.), t.) for some invertible g(¢).

Let ¢ and d be admissible sequences and let L be a linear functional for
which (L | 1) #0. We say that the sequence p,(x) is the basic sequence for
(t,d, L) if

(1) degp,(x)=n,

(2) (L|pux)>=dyb,y,

() tepux)=(dy/d,_\) p,_i(x).

For each choice of sequence c¢ the linear functional L has a series reresen-
tation g, (t)=X% o [{(L|x*>/c,]tk. Thus as linear functionals

L=g, .(t.). Note that g, (¢) is invertible since <L | 1) #0.
The following theorem is immediate from the definitions.

THEOREM 2.1.  The following are equivalent.
(i) p.(x) is basic for (t.,d, L),
(i) s5,(x)=(c./d,) p.(x) is Sheffer for (g, (tc): tc),
(i) {grelte) t&| pulx)) =d,0, 4,
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(iv) palx)=(d/c,) gre(te) ™" ",
(v) Zio pu(x)de) 1 =¢, (t)/gL.o(2).

Part (iii) of Theorem 2.1 gives us a version of the Expansion Theorem
and its important corollary.

THEOREM 2.2. If p,(x) is basic for (z.,d, L) then

o= 5 M2

dy
THEOREM 2.3. If p,(x) is basic for (t..d, L) then

(grelte) te ] plx))
dy

Pi(x).

plx)= Y

k=20

A useful way to organize basic sequences is as follows. For each linear
functional L satisfying (L | 1> # 0 we define the L-table or L-matrix to be
the matrix whose rows and columns are indexed by the 2¥° possible
admissible sequences and whose (¢, d) entry is the basic sequence for
(¢¢,d, L), which we may denote by B, 4(L). In L-table language, part (i) of
Theorem 2.1 says that those entries of an L-table which are Sheffer sequen-
ces are precisely the diagonal entries B, .(L). According to part (ii) of this
theorem, entries in the same row of an L-table are related in a simple man-
ner. Borrowing notation from the old style umbral calculus we may write

€
Bc,e(L) = a Bc,d(L)'

More exactly, if p,(x) is basic for (7., e, L) and r,(x) is basic for (¢.,d, L)
then

pn(x)=§'-' Fu(X).

n

The columns of an L-table present more of a challenge than the rows. It
is our intention to give an algebraic identity which characterizes these
columns. We begin with a result of Andrews [3], in a slightly different
form, which characterizes the operators #.. Let ¢, be the linear operator on
polynomials defined by

6, p(x)=p(xy).
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THEOREM 2.4. Let T be a linear operator on polynomials. Then t =t for
some admissible sequence ¢ if and only if

x"#0 alln>0
6,=y0,1
for all constants y.

Proof. One easily sees that 1.0, x" = yo t.x" and t.x" #0 for n>0. For
the converse, set tx"=s,(x). Then ys,(xy)=yo, s,(x)=yo, x"=
10, X" = y"x" = y"s,(x). Setting x =1 and changing y to x gives

" =s,(x)=5,(1)x""", n>0,

11 =54(x)=0.
Since s5,(1)#0 (otherwise 7x"=0) we may set
cp=15,(1)55(1) " 5,(1) co
with ¢, #0 arbitrary. Then tx" = (¢,/c,_,) X"~ '=t.x" Thus 1=¢,.

We are now ready to characterize the columns of an L-table.

THEOREM 2.5. The sequence p,(x) is basic for (t.,d,L) for some
admissible sequence c if and only if deg p,(x)=n and

n

paxy)=Y

kodknk

Pu(x) YL pui(x2)) (2.1)

for all constants y. In other words, p,(x) is in the dth column of the L-table if
and only if it satisfies (2.1).

Proof. First assume p,(x) is basic for (¢, d,L). The Expansion
Theorem gives

n

<) 1] pa(xy).

palxy)=

But

<gL,c(tc) t,c( l pn(xy)> = <gL.c(tc) | tfay'pn(x)>
=yk<gL,c(tc) | aytfpn(x)>

=d - yk<L|O-ypn7k(x)>
n—k

and the result follows. For the converse, suppose deg p,(x)=n and p,(x)
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satisfies (2.1). Then let t be the linear operator defined by
w.(x)=(d,/d,_\)p,_(x). Now (2.1) can be written as
" d

0, Pa(X) = EO dkd—:_k Pri(x) y"THL | pilxy)>

and applying 1 gives
= dn dn —k

70, pu(x) = n—k—1(X) YT L | pil(xp))
’ kgodkdn—kdnfkflp ol Y Px
dn "t d,,,l 1 —k
= n—1- L
ydnflkgodkd,.ﬁl_kp"”*"(x)y (L pi(xy)>
=ydnj10-'vpn_l(X)
=Y0,Tp,(x).

Thus to,=yo,t and since 1x"#0 we deduce from Theorem 2.4 the
existence of an admissible sequence ¢ for which t=1¢,. Thus
tepo(x)=1(d,/d, ) p,_(x). Finally, setting y=1 in (2.1) and comparing
coefficients of p,(x) on both sides gives (L | p,(x)> =d,d,,. Hence p,(x)
is basic for (¢, d, L) and the proof is complete.

Let us consider Andrews’ g-theory in the present context. Comparing his
Definition 1 in [3, p. 349] with (2.1) one sees that his theory is devoted to
the dth column of the ¢, table where ¢, is evaluation at x=1 and
d,=(1—-q) - (1—4")/(1-q)". Incidentally, this explains why there is no
transfer formula [8, Eq.(7.1)] in Andrews’ g-theory, for this formula
reduces to triviality when f(¢) = 1. Further, there is a recurrence formula for
basic sequences, obtained directly from [8, Eq. (6.3)] but unfortunately it
seems difficult to employ usefully in the present context.

3. INVARIANT OPERATORS

Let us call a linear operator t invariant if

for all constants y. Andrews [3] used the term Eulerian shift-invariant.
Some examples of invariant operators are:

(1) o, and any linear combination of such operators,

(2) xt. and any polynomial in xz,

(3) xkek.
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With regard to the last example, we state without proof (which follows the
lines of that for Theorem 2.4) the following result.

THEOREM 3.1. Let t be invariant and suppose 1x"#0 for k<n but
1x" =0 for n<k. Then 1= x*t* for some c.

Invariant operators have their own Expansion Theorem. If L is a linear
functional then by L, we mean the linear operator acting on polynomials
in x and y defined by

L, x"y™=L|x™) x".

We also define the operator L, acting on polynomials in x, by

Lx"={(L|x") x".
Notice that Lx"=L,x"y"=L,6,x" and so L=L,a,.

THEOREM 3.2. Let T be invariant and suppose that p,(x) is basic for
(te,d, L). Then

* 1 .
t= ) —<er | opulx)) x*Lik
k=0dk

where ¢, is evaluation at x = 1.

Proof. We first observe that 1o, p,(x) =0,7p,(x) is symmetric in x and
y and so, treating y as a variable, we have 10, p,(x)=1,(0,), p(y)=
17, pu(xy). Using Eq. (2.1) with x and y interchanged we have

Tpn(x): <(81)y I O-yrpn(x)>
= <(81)y ' Typn(xy)>

d,

= L4d,

k=0 -

-3

n
k:()dkdnfk

<(81)y | Typk(y)> kaypnfk(xy)

ey L tpilx)> X“Lyo, p,_i(x)
n l A A
=, 7 el () X7Ly6, 18 pu(x).
k=0"k

The result follows.
Since L is the identity when L=e¢, we obtain the following corollaries.
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COROLLARY 3.3. Let t be invariant and suppose p,(x) is basic for
(t.,d, &,). Then

aC

Z ey | pelx) ) x“15.

COROLLARY 3.4. If p,(x) is basic for (t.,d, ¢,) then
® 1
g,= z pk(z) X tk
dy

k=0

Before we leave this section we observe that

Cofte|x")=<tg]a,x">
=y"cn5n,k
=ty 1 x")

and so
oy f(1)=f(y1).

In other symbols.

Fyt) | p(x) > =< Sf(t) | p(xy)).

4. EXPONENTIAL-TYPE SERIES

In this section we shall consider the series

0 k

e,t)= Y 1,

k=0 €k

This is the “exponential” series in the c-umbral calculus. We define the
linear operator &, acting on power series in ¢ by

o k=K

k-1
. o
Cr-1

Thus, for example, (0.75|x") = (cifci_)ta™ "1 x") = (ex/eh 1)
di_10,_ 1, It is easy to see [take f(1)=1r* and p(x)=x"] that
(flt) | xp(x)) =0 f(t) | p(x) ).
Also
0ty (1) =ye , (1)
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Our next goal is to get some information about d4¢, (¢). One easily
verifies the next lemma by setting p(x) = x".

LEMMA 4.1, (1.048,c(1) | p(x)) = {&y | tap(xp)).

THEOREM 4.2.  Let s5,(x) be Sheffer for (¢, (1), t.). Then

o0

adsy,c(t)=< 5

k=0%k+1

ey td5k+1(xJ’)>tk> €, (1)

Proof. By the Expansion Theorem

|
tadgy,c(t)= Z - <tcadey,c(tc) I Sk(x)> gy,c(t) tk
k=1Ck
< 1
= Y — (& | tasi(xp)) £, (1) 1F
k=1Ck

from which the result follows.
If we take d,=n! then t4 is the ordinary derivative D and Theorem 4.2

gives

< 1

De, (1) = ( 5

k=0%+1

<81 | Dsk+ 1(x,V)> tk> S_v,c(t)'
Solving this differential equation we have

THEOREM 4.3.  Let s,(x) be Sheffer for (e, (t.), t.). Then

|
&,c(t)=exp ). o, Cer | Dsilxy)) a

k=1 k

A situation which seems to occur frequently is when two admissible
sequences are related by
Cﬂ

= N T =)

where u,(x) is a sequence of polynomials and N is a linear functional for
which (N |u,(x)> #0. In this case

o0 yk
&,4(1)= ) d—t"
k

k=0
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where the last equality is, in effect, a definition. This leads to the following
result.

THEOREM 4.4. Let ¢ be an admissible sequence, u,(x) the basic sequence
for (t.,¢, M) and N a linear functional for which (N | u,(x)> #0. Then if

c
dnz__..."—
(N u,(x)>
we have

(N et

Bral) =

Next we consider the problem of determining D,(f) in the formal
equation

i k(x)

where s,(x) is Sheffer for (g(z.), t.). Clearly D,(t) exists and in fact
Dy(1)=<g(te) t{ | e alt)

where ¢ is a formal variable and the linear functional g(¢.) t* acts on the
coefficients of the powers of ¢ (which are polynomials in x).
Let us suppose that the operators ¢, and ¢4 are related by

tc = u(o-y) td

where u(o,) is a linear combination of integral powers of ¢,. Since
140, =y"a%14 we have

ti=u(o,) u(ya,) - u(y* 'a,) 1k,

Since t5e, 4(1) = r*e, 4(1) we get
Dy (1)< gl(t) | tie, a(1)>
= 1k<g(tc) ' u(ay) e u(yk; lo-y) gx,d(t)>'
Now if

] k
0= 5 B

k=0



232 STEVEN ROMAN

then {/(14) | p(x)> =<g(tc) | p(x)) and so

Dy(1) = t*{l(ty) | u(a,) - u(y* ~'oy) &, al1))
=1 Cu(a}) - u(y*'o¥) lta) | £.a(t)).

Finally, since for any series /(1) we have { f(t4) | €,4(¢)> =f(z) we get

Di(t)=r'u(a})---u(y* ‘o ¥) l1).

We have proved the following result.

THEOREM 4.5. Let ¢ and d be admissible sequences such that
tc = u(ay) td

where u(a,) is a finite linear combination of integral powers of o,. Then if

Sa(x) is Shefferfor (g(t.), t.) we have

tra)= 3 2 sy omy (- 10) i)

k=0 Ck
where

RCAIES

I(t)= 4

k=0

COROLLARY 4.6. Let ¢ and d be as in Theorem 4.5 and suppose s,(x) is
Sheffer for (e, .(t.), t.). Then

= X
- Z "(f ) u(o ¥y u(y* o}y e, 41).
=0 k
S. THE ¢g-CASE

Let us first set down the basic facts of the g-case. We set

L a)=g}) - ((1=q")
" (1—gq) '

Then
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and

is the g-binomial coefficient.
The operator ¢, is known as the g-derivative and we have

1_ n
tcxn: q xnfl
1—g¢
and so
p(x)—plgx)
tep(x) =220
(t—q)x

Thus if s,(x) is Sheffer for ¢+, we immediately have the recurrence
$p(x) = 5,(gx) = (1 —q") x5, _1(x). (5.1)
The operator 1, is related to ¢, by

g,=1-(1—-q)xt

The operator d, is given by

oopty L= er)

-q)t

and satisfies the Leibnitz formula (see [8] for an umbral proof)

o (1) () i () g3 (1) 0 gg¥1).

The g-exponential series
< o1
=Lat
satisfies J ¢, (1) = y&, (¢), which using (5.2) is
£y clqt)=(1—(1—g) yt) &, (7).
We also note that

g_v,c(l) = Sl,c(yt)
acgy,c(t) = _ysy,c(qt) -
Oty () e, ()=(y+z—(1—q) yzt) &, (1) &. c(2). (5.3)
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The g-binomial coefficients have important combinatorial significance
[6,7]. In [7] it is shown that when ¢ is a prime power the number (%), is

the number of vector subspaces of dimension k of a vector space of dimen-
sion n over the field GF[q]. Following [6] we set

=3 ()

q

Then G, is the number of subspaces of an n-dimensional vector space over

GFlq]
Now we first observe that
tk n
t)=|x")= .
(st 2|2 =(3)
From this we obtain some of the simplest properties of (}),,
= & —_—
k ‘ 1,e\fe Ch X
k—1

= <81,c(tc)—c_
Ck Cr—1

_Ck_1 Cn (n—l)
e ey \k—1 p

_1—q"(n—1
T 1-gf\k—1 4

tcx">

and
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Next, using (5.3) we have

f (n) V2R = ey elte) Ea() | X7

k=0 k
= <(J’+Z‘ (1 _‘I) th) evv,c(tc) sz,c(tc) I x"71>
n—1 __1
=(y+z) ) <n > yrgn ok
k=0 k q
n—2 _2
—(1=q""Hyz ¥ (n ) ykzn 2ok
k=0 k q
If we take y=z=1 we get the recurrence
Gn=2Gn71_(1_qnil)Gn72
and if we take y= —1 and z=1 we get
Anz(l—qnil)Anfz'

Basic umbral techniques can be used to determine solutions to certain
recurrence relations. For example, in [2] Al-Salam determines those
sequences s,(x), Sheffer for 7., which are orthogonal, that is, which satisfy
the recurrence

S,,+1(X)=(X"b,,)sn(x)—d,,snil(x), (54)

so(x)=1. After determining b, and d,, Al-Salam simply states the
generating function of the solution. Let us give a complete, yet simple,
umbral solution. Suppose s,(x) satisfies (5.4) and is Sheffer for (g(t.), 7.).
Applying the linear functional g(z.) t* to (5.4) gives

Cglte) 6 | sny1(x)) = glte) 1| (x —b,) 5,(x)>
~<g(tc) tic ' dnsnf(x)>' (55)

Then we observe that

<g(tc) tf ] S"+1(X)> =ck5k,n+1 = <cck

k—1

gt it | sn(x)>,

Cglte) t& | xs,(x)) = O g(te) 1 | 5a(x))

and

(et 15,00 =cudp 1= (gt 1 15,0 ).

k+1
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Thus from (5.5) we get

Cr c

g * ' =0.g(t) t* — brg(t) t"—c “d, o gt)
1

k—1 k+

Using Leibniz’ formula 9, g(¢) t* = (¢ /cc_ ) g(t) t* =t + g*1*d. g(1), and
rearranging gives

Cr

acg(t)=q*k(bk+ dk+,z)g(z),

Cr 41
this for all k£ > 0. Therefore

b= qkbo

Chv1 g
diy1= q'd,
Ci

and 0. 8(1) = (b +d, 1) g(1).

Recalling Eq. (5.3) we see that

g(t) = 8y,c(t) Sz,c(t)

where y+z=5b, and (1 —q) yz=d,. The generating function for s,(x) is

thus e (1)/e, (1) & (2).
In [2] Al-Salam also shows that those sequences Sheffer for 7, and
orthogonal on the unit circle are characterized by satisfying the recurrence

Swa1(X)= (x+7+B4") 5,(x) —y(1 — q") x5, ((x). (5.6)

An umbral solution to this recurrence is as follows. Using (5.1) in (5.6) we
get

Sy 1(X) = (x4 B 5,(x) + 75.(qx).

If 5,(x) is Sheffer for (g(z.), t.) then applying the linear functional g(z.)
gives

0=C0c8(te) | 5.(x)) + Bq"<g(t) | 54(x)> + < 8(qte) | 5.(x)).

NOW qn<g(tc) I sn(x)> zqncnan,ozcnénﬁ: <g(tc) I sn(x)> and 80, as
before,

0. g(t)= —Pq(t) —yg(q1).
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Using (5.2) we get

glgt) _1+(—q)pt
gty 1+(1—gq)yt

Finally, recalling that ¢, .(qt)/e, (1) =1~ (1 — q) yt we have

_8 /i,c(t)
e ll)

g

and the generating function for s,(x) is & . (#) e, (f)/e _ ().
Let us return to some examples of Sheffer sequences.

I. We write s,(x) = [x],, for the Sheffer sequence for (¢, (1), t.). To
determine [x],, we first observe that [y],, = (&, (t) | [x],,11>=0
and so we may set

[‘x]"'."+l = (X'—y) rn(x)'

Now Leibniz’ ruie gives
Ch1 5n+ Lk+1= <8_v.c(tc) t’c(Jrl l [x]y,n+ l>
= <8_r,c(tc) t/c(+ : | (x—}’) r,,(x))
= <(6c _J’) 8'\'.c(tc) tlc(+ ! I rn(x)>

=S e (gt 1] (X))
Ci

and since ¢, (qt) =¢,, (1) we get

<8qy,c(tc) t,c( | rn(x)> = Ckén.k'

Thus r,(x)=[x],,., and so

[x:]y,n +1= (X - y)[x]qy.n
leading to

n—1

[x], ., =(x=y)x—qy) - (x—q" y)

The generating function for [x], , is

<= [x]y,k k_ex,c(t)
kgo Ck ! _8_v.c(t).
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Setting x =0 and noticing that
k (5)
(0], =(=»)"q

we get

L _ 5 O G (5.7)

gelt) W Zo

Equation (5.1) is the recurrence

[x]yn [qx]yn (l_q )x[x])n 1
Theorem 2.5 becomes

[xp]on= i ( ) [Tk 7 032 e s

The exponential ¢, (¢) is related to infinite products. With regard to
Theorem 4.3, setting y =1, we get

e | D[xTey =& | D(x—1) (x—¢" "))
=(1—g)(1=¢"")
_(1—g)f
——C

s 1 [A—q)]*
gl—q" k

& —q) 11"
35 plioad
& [f(1—g) ]~
kZ———

II
|| Ms

I

P2 3

Jj=0k=

=exp ), log(1—(1—q)qg' 1)

Thus
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The above calculations can be justified on various grounds, for example, if
lg <1 and [f| < 1/(1 —gq).

Combining this with the generating function for [x],, we have

1-(-q) gy & [x]u 4
jlz—[ol_(l“q)qjxr—kgo Ck -

Replacing ¢ by t/(1 —¢q) and using the notation of basic hypergeometric

series, ¢,(1—¢)*=(q;q), and [x],,=x*(y/x; q), this becomes Heine’s
theorem [11, p. 92]

S 1=y & (Vg
onl—q’Z‘_kgo (4; 9
= 1ol y/x; q; xt].

(x1)*

The Expansion Theorem gives

[x]y,nz i Mxk
k=0

Cy

=3 (}) Conclto) | Tl
k=0 q

- o (n o=k ("35) ok
k§0<k>q( )" g 2 x

and

[x]y.k

vie § St €12
k=0 Ck

n n .
= Z yn [X] vk
k=0 <k > q '
The Expansion Theorem also gives

(= ot 1 xTxD,

k=0 Ck

[x]_v.k .
But

Cepelte) 161 x[x]y0> = CBcty elte) 81 [0

Ci -
= <—*— 8y\c(tc) tf !
Ck—1

(gt ye,id) | [x]_v,n>
=401+ qkyck(sk,n
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and so

x[x]y,n= [x]y,n+1 +qny[x]y,n'

In the Expansion Theorem for invariant operators (Theorem 3.2) let us
put p,(x}=[x],,=[x],. Then L=¢, and

(e o)

1= ¥~ ol elxl,) #41,

k=0"%k

In particular, if = o7 then for k>m+ 1 we have [¢™], =0 and for k <m
we have

[4"Ji=(g" = 1) (¢" —¢*" ")

(1 5 Cm
= (g1 12

= q— 1) ¢De, (1) 25 x>,

Thus

m R RY
or= 5 U By 1) amy ket
k=0 Cx

For any polynomial p(x) we get

plo,)= i (q——])kq(g)@l,c(tc) 1¢ | p(x)) xkt.
k=0 Ck
In case p(x)=[x], we obtain
[0, = (g~ 1) ¢Dxnsz. (58)
We shall use this formula later.

2. The Sheffer sequence for (¢, (t.) ", 1.) is

H,(x;y)=¢,(t.) x"

o /n
— Z < > yn~kxk.
k=0 k q

The polynomials H,(x;1) are known as the g-Hermite polynomials. We
have

i Hi(x;y) p

=&,(1) &,c(1)
€ ’

k=0
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and for |g| <1, |t| < 1/(1—¢q),

= 1
Ck l;l (1—(1—-q) ¢y)(1 — (1 —q) ¢xt)’

Equation (5.1) is
H,(x;y)—H,(gx;y)=(1—q") xH, _,(x; y).
The Expansion Theorem gives

" Ceyelte) Tt | XH (X3 9))

xH (x; )=}, Hi(x; ).
k=0 Ci
But
<t (1) 1| xH (x;¥))
= (0.8,c(1e) T | Hy(x3y)>
= (i) dand ™ Hxi))
k—1
=1 0pns1— e, c(te) 14| H (gx;p)>
and so
n+1 1 v
xH (x;p)= Y, E—(ckﬁk,n+1—y<6y,c(tc) t“H,(gx; y)>) Hi(x; p)
k=0"%k
n+1 Svctc 'lt’; Hn x;
=H, ,(x;y)—y Z CEpelte) Cl (g y)>Hk(x;y)
k
=H,  (x;y)—yH,(qx; y).
Thus
H,, (x;y)=(x+ya,) H,(x;y)
Also

= Z Cepelte) ! tflx">Hk(x;y)

Ch '
=3 (}) Coeta M1 Bty

which, using (5.7), gives

2()( yy g )
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The Expansion Theorem also gives

Hz)m § Sonclt) ] Hylx 2

k=0

= 3 (}) HostiaDx0,e
k=0 q

)>[x]Lk

Ck

Writing out H, (x; z), observing that H, ,(y;z)=H,_,(z;y) and setting
y=1 gives

) (Z) = (Z) H, iz Ix];.

k=0 k=0

Now in this equation we may replace x by the operator o, and since the
resulting equation holds for all z, we may replace z by x giving

z(:) gk 3 (Z) H, (x: Do, ],
k=0 q k=0 q
According to (6.8)

o) Halxs D= (g — 1) 1) 22 xbmr, 1)

m—k

i <Z> x" koK H,(x; 1)
q

i <Z> (Zl) c"(q_l)kkan—k(x§I)Hm,k(x;l)_

k=

It remains to evaluate the left side of this equation. For n=1 we get
(x-%aq)fLAx;l)=I£n+Ax;l)

and for n =2, observing that o,x = gxo,, we have

[6), 7 #(0), 7+ (), ety

=(x*+(1+¢q) xo,+ 05) H, (x;1)
=(x+x0,+0,x+02) H,(x;1)
=(x+0,)° H,(x1)

=H,, . (x;1).
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One easily sees, by induction, that
2 (n
Y <k> x" fok=(x+0,)
k=0 q
and so we finally have

Hyorxi1)= 3 <Z) (’,’j) cla— 1) X H,_o(x; 1) Hyy (1),
k=0 q q

a result first established by Carlitz [5].

6. A RELATED UMBRAL CALCULUS
In this section we shall consider the umbral calculus defined by setting

n n

d = c c

" (__a)" q(g)—— <£0 | [x]tx,n>

for « #0. Then

and d

The operator ¢, satisfies

tdx = tcx
o
1
=—0, 1l X"
and so
1
td —:“‘ O'q—l tc
and
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If 5,(x) is Sheffer for 1, we have

$u(x/q) — 5,(x) = (g ™" — 1) x5,_ 1(x).
It is easy to see that
o,-1=1+4(1—qg )axt,.

The operator d, satisfies a Leibniz-type formula

1
af(1) g(t)= —~ 0310 f (1) g(1)

=S (t/q)048(1) + q(1) 04 f(1).

The exponential series ¢, 4(7) satisfies

&,a(t/g)=(1+(1—q ") ayt) e,4(2),
048, A1)~ '= —ye,a(t/g) !
and
Oatyalt) eza(t)=(y+z+(1—g 7 Y ayzt) e, a(1) &.q(0).

Theorem 4.4 shows that
Ceo | 8xel¥1)?

€, V1)

1
e 1)

ay,d(t) =

For |g| <1 and |¢] < 1/(1 —q) we have

) =] (1= (1~ q) o).

The connection between d and ¢ can be seen for « = —1 by observing
that if ¢ is replaced by ¢ ' in d, one obtains c,,.

Results similar to those of Section 5 may be obtained here in a com-
pletely analogous manner. For example, the numbers

r n
G;,= qk(k—n) ( )
kgo k q

satisfy the recurrence

G,=2G,_—(1-¢g~""")G,_,.
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A solution to the recurrence
Sny1(X)=(x—b,) 5,(x) —e€,5,_1(x),
so(x)=1, Sheffer for ¢4, occurs when
b,=q" by,

_ dn+1
€hrt = 4 q oe,
n

in which case the solution is Sheffer for (g(z4), #4) where

g(1)=¢,.4(t) & 4(1)

with y+z=byand (¢ '—1)yz=e,.

The main reason for introducing the present umbral calculus is not so
much for the above results but rather for results obtained by relating this
umbral calculus to the g-umbral calculus (which are to follow).

Let us turn next to Sheffer sequences.

3. The Sheffer sequence for (e, 4(¢4), 14) 18

su(x;y)=¢,4(tq) “xn

tkx"
o Ck

d,

k=0 de,,,k

= Zn: <n> (_y)nfkq(lz‘)f(;)xk_
k=0 k q

() x"~*

In a manner similar to that of Example 1 we see that

~(n—1)

s y)=(x—y)x—gqg 'y)(x—q V).

The generating function for s,(x; y) is

5ok y) . Exall)
ko x

kgo dy £, ()

_ Eac(1)

Eac(Xt)
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For |g| <1 and |¢] < 1/(1 —gq)

oSl y) = 1—(1—gq) gaxt
g l] 1= (1—q)qayt

4. The Sheffer sequence for (e, 4(t4) ™', 14) is

G.(x;p)=2¢, 4(t4) X"
o (n kk—n), n—k ok
=) q kXK,
k=o<k>q

These polynomials were introduced by Carlitz [5] for y=1. The
generating function is

S O ey ean)

1
el V1) £y e(x1)
and for |g| <1, |t| < 1/(1 —¢q)

n G o0
5T 0= 0=g) g - (1~ i,

k

As in the g-Hermite case we find that

G, p)=(x+yo,1) G (x;p).

Now that we have two distinct umbral calculi we may consider
Corollary 4.6.  Since 1, = —o0 1, we have y =g and u(o,) = —oo,. Thus

u(a®) (g o) e.alt) = (—)* (2 o 2ke. (1)

= (—arqPe_y(g1)

and Corollary 4.6 becomes
o — ko x
gx,d(t)= Z u-q(Z)

k=0 Ck

[x]:,k tksz,d(qkt)'

Now we divide both sides by e¢,4(t) and observe that for |g|<1,
1] <1/(1—gq),
ea(q") 5 1=(1—¢q) ¢ ozt
e.a(t) 2o 1—(1+q) ozt
k—1 1
=11

iZo 1= (1—q) fazt

—s

I
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and so
1—(1—gq) gaxt
1—(1—q) q’oczt

Replacing ¢ by t/(1 —q) and setting « =1 gives
k
[l § Gsa d?
oo l—=qzt 2y () (g9

11
/) 5! L
ST 1—(1—gq) ozt

j=0

7. ANOTHER UMBRAL CALCULI

Let us take
c'l — cn

e": [a]a,n— <8a | [x]ackn>

where a#0 and a #a. Then

€, 1 c,
€1 a-aanlcnfl’
en - [a]a,k[a]a,n-—k <n)
ekenfk [a]ot,n k q

In the notation of basic hypergeometric series [a],,=a"(2/a; q), and so

— c"
a"(o/a; q),

and

e, {ofa; q)lafa; q), (n)
k),

enen—-k_ (O‘/‘I;‘I)n

Observing that

(a_ao.n—-l)xn-—l

e
(a—a0,) tx"=

n—1

we have
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According to Theorem 4.4
AL
€q,c( V1)

_ taclyt)
Eac( V1)

&y,e(t) =

For |g| <1 and |tf] <1/(1-gq)
= 1—(1—q) oyt
1_[ - 71"

g,.(t)= —
el j=o 1= (1—q) gayt
We also remark that
ch(qt)
&yelqt)= o (@)
1—(1-gq)ayt
=————"<_¢ (D).
1—(1—gq)ayt #all)

Let us have more Sheffer sequences.
5. The Sheffer sequence for (£,e(tc), 1) is

ra(x;y)=e,(te) "' x

_ tac(te) )
A )

o
5 W
=0 Ck

-3

k= ()Cken k

_ Lodan- «[a],x n—k _k
—kg <k>q [a]ozn d o

The generating function is (cf. [3, p. 365, Eq.9471)

-k

L]k p "

o rlx;y) e Exell)

§0 € Ve(t)
_Eaclxt) &, (1)
ee(xt) £, (y1)

k
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For |g| <1, |7] <1/(1 —¢q)

irk(xy “=T] 1—(1—q)cﬂ'qyt)(l—(l—q)q’axt)'
Z (1—=(1—q)¢yt)(1 —(1—gq)gaxt)

j=0

Theorem 2.5 is

e'l
relx; 2) yor, w(yz; 2).

i)=Y

k=0 €r€, &
We also have

i rk(x; }’) Zk — Bx,c(at) 8_v.c(at)
k=0 Ck

e, lat) e, (at)

8

[x]y1 t}lz [}’]u ),'

i=0 rOi

: dok I tr
=< ( ) [alox [x]»”"[”***)a

il

i

INgE

and so

<k @it
i = ¥ (1) T Bl

6. The Sheffer sequence for (¢, .(f.) ', t.) is

u,(x; y)=-¢,q(te) X"

The generating function is

D e (10
k
_tudy) )

a1 g c(xt)
Next let us consider Corollary 4.6. Here we have 1, = (a —a0,) t. and so
u(o,)=a—oac,. Thus

u(oX) - u(g" o) e ()=(a—ack) - (a—af o F) e (1).
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For practice we take k=1,

(a - aa:) 8z.e(t)aez,e(t) - asz,e(qt)

_ 1—(1—gq)azt
==

_ a—ao )
TT-(l—gq)az ="
For k=2 we have
(a - aa:)(a_aqa:) 8z,e(t)
—(g—oge*)— 7%
(4= 03) =7y 2z S0

_[ a—o
B AT Y
a—ao l—(l—q)azt]&e(

(=g azgr T — (1 —q)azt | V)

_ a—ao a-—aq
_1—(1—q)o¢zt1—(1—q)oczqt

8:,2

From here it is an easy matter to see (by induction) that
(a—ao})---(a—ag" 'o¥)e. (1)
_ (a—0)(a—ag* ) . (0
(=1 —q)oazt) - (1= (1 —g)ozg" (1) ™
k—1 1

= [a]a,kez,e(t)jljo w

Thus Corollary 4.6 becomes

k - 1
Ecell)= Z [a]a [x ]zkt [n m]ﬁz.e(”-

k=0

Dividing both sides by ¢. (1) and replacing ¢ by /(1 —gq) gives

= (1= qazt)(1 — daxt) (#/a; q)i(z/x; q)i k
W =i —gaw) kzo et g e
= ,¢.(a/a; z/x; azt, q; axt).

This is the basic analog of Gauss’ theorem [11, p. 97].
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8. SOME ADDITIONAL EXPANSIONS

In this section we shall very briefly consider some expansions, including
Carlitz g-analog of the Lagrange inversion theorem [4]. A more thorough
discussion must await a sequel to this paper. Let c¢,=(1—¢q) -
(1 —¢")/(1 —q)" be as in Section 5.

Recalling the generating function for [x],, we begin by observing that

<épolg ) 1 8y lg T ) T XD
— Ck ey,c(qintc) ka,n
Ckfn sy,c(q“k*—ltc)

- j=0 .I

Ck -
= [yq ”]yq’k+l,k7n
Cr—n

=Cn5n,k' (81)

From this we obtain the expansion

_ & S L eelg T ) " xR
kgo

Cr

dg it (82)

valid for all series f(¢), since it holds f(t)=¢, (g "1)¢" for all n=0.
Variations on this expansion are possible since for any invertible g(f) we
have

i )| glt) e, g e X"

g(t) e, (g 1)~
Ck .

fly=

k=0
Also, from (5.7) we get
2 (=g Y
=) —
j=0 ¢
ko (k
Z (])( yq7k+l)1q( ) k—j
j= q

7y .
erelg * T 1)k g2

and so (8.2) can be written

* 1 ko (k A )
NOEDY —[Z () (—yq“‘)fq(z)<f<tc>1x"f>]s_v.c(qkt) ",

k=0 Lj—o \J
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As a simple example, if we set f(1)=¢,.(¢)=1 then we get

o )k
1=% (=) q*(g)sv,c(q‘*t) 1,
k=0 Ck ’

Setting y=1/(1—g), multiplying by ¢,.(r)"' and observing that
&g e, ()=1/(1—(1—¢q)tg *)--(1—(1~¢q) tq~") we have (after
replacing ¢ by t/(1 —q)),
0 ) o (_l)k _(k) Ik
1—tg)= 2
o==2 s T

j=0 k=0

—tg ')

In Slater’s [11] notation this is

VT B e —
j=0 K=o (97"t )ilq; @)

Incidentally, in the terminology of [9] the sequence s,(x)=
€,c(g 7 ¥ ') 7! x* is known as a decentralized Sheffer sequence. Moreover,
Theorem4.4 of [9] gives a formula which shows that if
CBpelq 1) 12| 54(x)> = €48, then s,(x)=¢, (¢ *"'1)"' x*. Thus the
sequence s,(x) was not obtained by sheer guesswork. But since we assume
no familiarity with [9] we have given the derivation (8.1) above.

In a similar way we may verify that

CEpelq"te) ™' 18] &, (g7 1) XY =, O

Thus for any f(z) and invertible g(¢),

i {fte) | glte) &g ') X 2

(1) e, (g )R (83)
Cr

f=

k=0

As an example, let us take g(r)=¢, (¢) . Then
&,c(q"1) "o ;
—— = 1—(1— t

bul) L (1-(1—q) gyt

=((1—-q)y1;q),

and taking y=1/(1 —gq) gives

S SN q) x>

2

k=0 Ck (6D

f()=
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It is easy to verify that

e,q ') o edt) ko,

e,.(t) T yelte)
Thus for g(1)=¢, (1) ' Eq. (8.3) is
& S x(t @) x> *
= . 84
f(t) kgo Cr (% q)k (84)

This is Eq. (1.11) of [4], which is Carlitz’ g-analog of a special case of the
Lagrange inversion formula. To see this we note that

S I x(te; @) XK1 =0 flE) | (te; e X1
=(te; @) O f (1) [ X571
= (O T [(te; @i 0 S (1)1 | XD,

In the notation of [4] this is (1—gq) * A5~ '[(¢), 4f(¢)] and since
cr = (g)(1 — q)* we get (1.11). Similar considerations would lead to other
g-expansions, such as (3.14) of [4].
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